NONLINEAR HIGH-FROUDE-NUMBER FREE-SURFACE PROBLEMS

by
T. F. Ogilvie*

1. Intvoduction

Many authors have applied the concepts of slender-body theory to the
problem of a body translating along a free surface. Several years ago
there was a spate of papers in which the problem of calculating ship wave
resistance was attacked in this way. See particularly Tuck (1965)(), which
lists many other references. These ideas have been applied to the problem
of a planing boat by Tulin (1959)(?; an indication of the same approach
had already appeared in the famous paper by Wagner (1932)(®) . There has
been a conspicuous lack of success in predicting wave resistance in this
way, and so slender-body theory has fallen into some disrepute for ship
hydrodynamics problems, although it has certainly not been adequately
tested in the planing problem and perhaps not in the resistance problem.
It is possible that valuable information may still be extracted from the
application of slender-body theory to steady-motion problems of ship hy-
drodynamics. ,

One major feature distinguishes slender-body theories for ship problems
from the usual slender-body theory of aerodynamics, viz., gravity (or
Froude number) appears as an extra parameter, and a special assumption
must be made about its order of magnitude. The basic parameter of slender-
body theory is, of course, that quantity e which specifies how slender the
body is. We may take it to be the beam/length ratio, the draft/length
ratio, or some other measure of slenderness, such as the maximum slope
of the body-surface tangent plane with respect to the longitudinal axis.
(We continue to avoid being specific on this matter. It is often very con-
venient to think of overall length, L, as being a quantity of order unity
and beam or draft of order €,) In free surface problems, one must inves-
tigate what reasonable assumptions can be made about the magnitude of g
with respect to €. ’

In the ship resistance problem, it has generally been assumed that™*
g = O(l) as € =0, or, more precisely, that 1/F 2= O(1), where F = U/VgL,
the Froude number, On the other hand, in planing problems one is usu-
ally concerned with high Froude numbers, and so Wagner, Tulin, and
others have assumed that gravitg is negligible, which, as we shall see,
amounts to assuming that g = O(€?), or F = O(e~1). In all, it will appear
that there are four interesting cases:

(1) g = O(e-1). Gravity dominates in the free-surface conditions,
i.e., the free surface condition is everywhere equivalent to a rigid wall
condition.

(2) g = O0(1). Gravity dominates #ear the body, but ordinary gra-
vity waves occur at large distances from the body. This is the case usu-
ally considered in the analysis of ship wave resistance.

(3) g = Of). Gravity waves occur near the body, but gravity
effects vanish far away, leaving the far-field free surface as a simple
pressure-relief surface (with no wave motion possible). This case is de-
veloped in the present paper.

(4) g = O(€?). The effects of gravity vanish everywhere. This is
the usual planing case.

*Naval Ship Research and Development Center, Washington D.C., U.S.A., presently at the University of
Michigan, Ann Arbor, Michigan, U.S.A.
All statements invoiving O, o, and asymptotic expansions are based on the definitions in Erdélyi (1956)(4).
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The simple interpretations given here for each case apply only to the
lowest~order approximations, but in practice one is not likely to carry
calculations beyond the first approximation, It should be noted that this
list of four cases is complete, at least with respesct to the lowest-order
problems which result, This fact will be demonstrated later. i

The distinction in cases (2) and (3) between near-field and far-field be-
havior suggests that a method of analysis should be followed which makes
the differences very clear. Tuck has done this for case (2) by using the
method of matched asymptotic expansions. Inthat method (Van Dyke (1964)()),
one assumes the exigtence of different asymptotic expansions according to
whether distance from the longitudinal axis is order € or order 1. The
first is supposed to be valid on the body but not at infinity, whereas the
latter is wvalid at infinity but not on the body. Characteristically in such
analyses, the two expansions must be found simultaneously, for there are
not sufficient boundary conditions to determine either expansion alone,
Step-by-step, the two are matched to each other as successive terms in
each are found,

We shall set up the problem of case (3), We obtain very simply the ge-
neral solution for the first term in the outer region. The first term in
the inner solution cannot be found analytically, for it must come from the
numerical solution of a boundary-value problem. This problem involves the
satisfaction of the full nonlinear boundary conditions which are typical of
free-surface problems; we show that it would be improper to try to linearize
these conditions. However, the numerical solution needs to be found in two
dimensions only. This appears to be a reasonable computer project to un-
dertake; an outline of a proposed procedure for doing this is presented.

The matching of these two first terms requires that we know the beha-
vior of the inner solution at infinity, However, we do not know it analyti-
cally anywhere. There are two ways of resolving this difficulty. Firstly,
we could assume that there is an overlap in the domaing of validity of
inner and outer solutions and thus infer from the outer solution what is
the behavior of the inner solution at infinity. It turns out that this is in-
deed a correct inference, but it is still an inference. Secondly, we can
find an "intermediate-region' solution, and this solution must necessarily
overlap the inner and outer solutions. This procedure provides a proof of
the correctness of the first procedure. To carry it out here would lead us
too far afield from our main concern; we limit ourselves to an indication
of the method and its results in an appendix. ' '

The establishment of case (3) not only completes our hierarchy of prob-
lems. It provides a mathematical formulation for the physical problems of
steady ship or planing-surface motion in situations in which the speed is
high but not so high that gravity can be ignored. The application to high-
performance, small planing boats is rather obvious.

It may happen that application to problems of steady ship motion is rea-
sonable too, although one can only speculate on this matter at present.
Certainly, consideration of the usual values of Froude number leads to the
contrary conclusion, for a fast ship operates at a Froude number less than
0.4, which is hardly large, i.e., of order €%, -as required by the present
theory. However, -one should not jump to conclusions too quickly on the
basis of asymptotic solutions, and the lack of success of the conventional
slender-body theory in predicting ship resistance suggests that a basically
different approach is needed. In applying asymptotic solutions to practical
problems, one tries to use finite values for the small parameter which is
supposed to be approachirng zero. One never knows in practice how small
the parameter must be for the expansion to be useful; one:can only try
the expansion and examine the results, : :

" Let us now abandon all a priovi notions about what constitutes a "reason-
able'' value of a small parameter and consider the physical implications of
the different approaches. In case (2), a logical consequence of the assump-
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tions.is that gravity is strong enough to make the free surface act like a
rigid wall near the ship. The analysis which follows (case (3)) leads to the
conclusion that inertial and gravitational effects are comparable in the near
field, The latter seems physically to be a much more acceptable result,

In the far field, case (2) predicts the existence of gravity waves, whereas
case (3) does not. Here, case (2) seems to be more reasonable. But to
some extent the anomaly in case (3) is an illusion which disappears on
closer examination of the asymptotic solution. The result which will be
proven for the far field shows that as € — O the effects of gravity disap-
pear. But the waves are still there; they are represented by higher-order
terms in the outer expansion and it can be shown that these terms are con-
trolled in the matching procedure primarily by the lowest-order inner-
solution term -- which contains the wave effects. Since in any case our
interest is primarily in finding the pressure distribution on the body, it
is not unreasonable to demand the greatest possible accuracy of the inner
solution, while we disregard the outer solution as far as possible.

It must be emphasized that this is just speculation, However, the appli-
cation to planing problems is sufficiently attractive to warrant the work
of solving the inner problem numerically, and it should not be much addi-
tional work to apply the completed computer program to conventional ships.
Only the numerical results so obtained can settle the question,

2. The problem for g = Of(e)

In this section we formulate the steady-motion translation problem for
a ship under the assumption that g = O(€). In order to display this as-
sumption explicitly, we define a new constant,

We assume that the incident flow is a uniform stream with velocity U
in the positive x-direction. The body surface is specified by the equation:

z - h(x.y) = 0, (1)
where

hix,y) = Ofe), (2)

and h(x, y) is defined only for y = Of€). ‘The free surface is specified by:

' z - C(x,‘y) = 0, (3)

We assume that the generated waves are at most of the same order of
magnitude as the body beam and draft, i.e.,

{(x,y) = O(€). (4)

The fluid velocity is represented as the gradient of a potential function,
P(x,y,z), satisfying Laplace's equation:

Pxx + SDyy + oz = O. (5)
The potential also satisfies four boundary conditions:

0 =ph + goyhy -9, on z - h(x,y) = 0; (6)

X X
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FU = ge + (el + 0t eL) on oz - g(xy) = 0 (7)
0 =08, T o8, - 9, on z - g(x,y) = 0; (8)
¢ = Ux for both x = - and y?+z? = oo, (9)

Equation (6) is the kinematic condition on the body boundary, i.e., it
is equivalent to 8¢/dv = 0 on the body, where 8p/d8v is the rate of change
of ¢ normal to the body. Equations (7) and (8) are, respectively, the dy-
namic and kinematic conditions on the free surface. Equation (9) is a ra-
diation condition, sufficiently strong to render the solution unique in the
treatment presented here.

We express Equation (6) in a more useful form as follows. In any cross-
section x = x5 = constant, let a(p/an denote the rate of change of ¢ in the
direction normal to the section curve, z - h(x,,y) = 0 (positive for flow
into the .body). Then we have:

0 -p.h_+ e h
_3: Pyly T P Pxls (6')

dn A1 +h§ V1 +h2y.

This expression represents an apparent normal flow velocity across a cy-
linder with a shape identical to the body section at the chosen value of
X = XQe

In order to treat the inner and outer regions systematically, we intro-
duce new inner-region variables:

X=x; Y=yle; Z=zfe. (10)
We note that »
0 0 0 0 0 0

—_= —; — =t ;. — =€t —. (10')
ax 99X 9y aY 9z 9Z

Since the function h{x,y) is O(e), we define also

h(x,y) = € H(X, Y). (11)
The body surface is thus specified by

Z - H(X,Y) = 0. (11+)

Finally, we introduce assumed asymptotic expansions for the dependent
variables, ¢ and ¢, as follows:

N \
e, y,2) ~ L @, (X7,2;€), - (12)
n=0
with ¢ _, = o(p,) as €—0 for (fixed) y2+z2 = OQ1);
N
‘P(X:YJZ) ~ I @n (X’ Y, Z;E): (13)

n=0

with O ., = o(@,) as €-—0 for (fixed) VY?+2% = O(1);
N

txy) ~ L, g, (xyie) (14)

n=0



Nonlinear High-Froude-Number Free-Surface Problems 219

with ¢ ., = o(g,) as e -0 for (fixed) y = O(1);

N
¢x,y)~€ L Z_ (X, Ye), (15)
=0
with Z . = o(Z)) as € >0 for (fixed) Y = O(1).

The sense of the symbol "~" is the same as in Erdélyi (1956)(*. we
must require that none of the functions in the asymptotic expansions vanish
identically. '

We now start to find the solution by substituting the far-field expan-
sions, (12) and (14), into the differential equation and the relevant bound-
ary conditions, Since we cannot use the body boundary condition for the
far-field potential, we must find the most general solution which satisfies
the appropriate boundary conditions and which has arbitrary form near the
body. Then we shall have to turn to the near-field problem.

In the far field, if we let € — 0, there is no body at all, and so obviously

@, (X, 5, zi€) = Ux, (18)
From the kinematic boundary condition, we obtain the result that
0 = Ugo, + ofl),
and so
¢, (x,y:€) = o(l).
The next term, ¢,(x,y,z;¢c), of the asymptotic series (12) satisfies:

+ + = 0,
121 Pq <P1ZZ »

XX Yy
0 = U§0x iz + smaller terms, on z = §(x,y);

0 = eGg, + Ufp1x + smaller terms, on z = §(x,¥y);

p1— 0 as x —» -oo and  y2+z2 —soo,
The "smaller terms" include those terms which are necessarily of higher
order than those kept. A priovi, we cannot state anything about the rela-
tive orders of magnitude of the terms retained above. However, a brief
study of the possibilities shows that only one combination* of free sur-
face conditions is possible:

0

Uy, = €1, (17)
0 = <p1x. '

Since ¢, = o(l), we can apply these on z = 0 rather than on z = ¢(x,y)
without incurring errors of consequence (at this stage of the solution).
Then the last equation can be simplified to:

0 = Q- (18)

The problem for ¢, is now easily solved. We see that the solution sa-
tisfies Laplace's equation in the lower half-space. However, since e, = 0

*Other combinations are either mutually exclusive or lead to forbidden conclusions, e.g., ¢1 = 0.
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on z = 0, it can be extended analytically into the upper half-space as an
odd harmonic function of z. Furthermore, it must vanish upstream and at
large distance from the x-axis but we cannot specify its behavior on the
x-axis. The general solution™ is:

» sin md f['\/(x ~e)t et ex- €T, (Ge) dE

¢ (x,y 2z;€) = L
1 m=l pm 0 f\/&_ E)Z + rz (19)

where
y = r cos 8, z = r sin 9,

and the functions f;,, (x;€) are (for the moment) a set of m arbitrary func-
tions. For future reference, we give here the approximation™ to p; valid
for small r:

w 2™ sin m8
p, (¥, zi€) = L ——-———f (x - &)™ £ (E€) dE [1 + O(r)].

m
m=1 r 0 (2 0 )

It may be noted that there is really no justification at this point for
choosing zero as the lower limit of the integrals in (19). However, ¢
will soon be matched to .the inner solution, {;, and, since there is no
body where x < 0, @, disappears there. Actually, it can be shown that
¢, as given above represents a uniformly valid approximation to ¢ as
r' —0, provided x =& <0, where & is an arbitrary but fixed negative
number,

Nothing more can be said about ¢; until we attempt to match it to the
inner solution, and so we proceed now to formulate the problem for @o
and @;. Here we have a differential equation subject to boundary condi-
tions on the body and the free surface, However, we do not have a ra-
diation condition or other condition at infinity.

First we re-express all conditions in terms of inner variables. Laplace's

equation becomes:
0; (21)

2
- ; etc, 22
€ @oxx etc (22)

@oYY + Qozz

+
®1YY @122

In obvious analogy to (10') we define a new operator 8/8N = € 9/8n, and
so the body boundary condition, (6'), becomes:

dp 80, 8Q,

F et —— t ,..

oN oN oN
- 2 2
- e’ H, {(DOX +Q ...}/Vl + HY,
applied on Z - H(X,Y) = 0. Asymptotically, as € —0, we have:
EXON
dN

= 0; {23)

*See Section 9.3 of Ward (1955)(6).
*bid.
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]
2 H, O, /\/1 + HY; (24)
X

oN
etc.

It can easily be shown that 9@, /6N = 0 also on the free surface, Thus Do
satisfies the Laplace equation in two dimensions (2D), with homogeneous
Neumann conditions on the boundaries. Moreover, it must match at infi-
nity with ¢, = Ux, which has no gradient in the y-z plane. Accordingly,
for any X, @0 must be constant, i.e., @, is a function of X only. The
matching process immediately prescribes that

Q, = UX. (25)
The body boundary condition for @, now becomes:

2
op, €U H,

- , (24")
oN V1 o+ Hff,
and @1 satisfies the 2D Laplace equation:
¢, +d, =o. (221)
YY zZz
To leading order of magnitude, the free surface conditions are:
P) 1 2 2
0=€"GZ, +UQ + — [0, + 0 |; (26)
X 922 Y z
0=€e*vz, +0, z, -0 . (27)
X Y Y z

These are to be applied on the actual free surface. However, Z, = o(Zy),
by definition, and so we can apply them on Z = Z,, thereby incurring
only higher-order errors. We have no basis for applying them on Z = 0.

From (24') we see now that @1 = 0(62). In (26) it is apparent that the
quadratic terms are the same order as the linear term, U@1X,‘ and also
that Z, = O(l). In the kinematic condition, Equation (27), all terms are
the same order of magnitude. Thus @1 satisfies the 2D Laplace equation,
subject to the full, nonlinear, free-surface conditions, (26) and (27). The
only simplification over the original nonlinear problem is that here we
have a problem in two dimensions rather than in three. However, this is
a significant simplification.

There seems to be no alternative to solving this nonlinear problem nu-
merically, but fortunately it is of a type for which precedents exist. A
later section presents a discussion of a method for attempting such a so-
lution.

It should be noted specifically that Z;, = O(1), and so the free-surface
disturbance is not infinitesimal in the stretched coordinates. However, in
natural coordinates, we have from (15) that

$y) ~ € Z)(X, Ye),

which agrees with the assumption expressed in (4).

Normally, in order to carry out the matching procedure, we would find
®, analytically, approximate it for large R = VY“ + Z<, and match the
result to the outer solution evaluated for small r., Since we know nothing
about the analytical form of (I)l in any region, we cannot do this, and we
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must devise a different method for matéhing., One procedure, which actually
leads to the correct result (to lowest order), is to assume that Q; can be
expanded for large R in a series of cylindrical harmonics. This is not
really justified, because Q; is harmonic beyond a certain radius, but only
in a half-space. We could also use the outer solution in the form given by
(20) to infer the large~R behavior of (:Dl, but this is also not justified
unless we are sure that inner and outer expansions have an overlap in
their domains of validity, although this again happens to give the correct
result. The proper procedure in this problem is to find the '"intermediate
solution', which is really an asymptotic expansion which acts as an outer
expansion to the inner expansion and as an inner expansion to the outer
expansion., This intermediate expansion has an overlap with both of the
other expansions, and so it can give a true picture of the large-R_beha-
vior of ;. The results of the Appendix show that, for large R, @1 has
the form

Al (X;€) sin © B
[1 + O@/R)]. (28)
R .

1

(We could also indicate another error-term which is ofA;;) as € —0,)
Since O, = O(e?), we must have

All (X,€) = 0(62)'

In terms of real (outer) coordinates, @, is (for large R):

o, - € A (X¢) sin @ I:l o <_€.>]
r r

This must match o, (x,v,x;€), evaluated for small r. (See (20),) Clearly,

X
€ Ay (e) = 2 [ 1 (gie) d.

The other terms in (20) have no counterparts in @1 to match; they must
be higher order ine. We can see this in another way too. If a term in

(20) of the form
2™ sin mo x L
— | (x - &) £ (L) dE

m
r 0

is to match a term in (I)l, then the latter must have the form

A (X;e) sin m8

1lm
Rm
for large R, with A, =~ = O(e?) again. But, since R = r/€, we have
A (X;e) sin m8 €™ A, (x;€) sin m8
1lm = 1m
R” r

and so
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M a e =2 [ 9" g, o 6 (29)

fim (63€) = O(€™™ ),

This means that the terms containing f; , m > 1, do not really belong
in p,, since they are of higher order than the leading term.
We now have the result that

sin 9 f[\/ (x - E)+ r? + (x - E)] f11 (£;€) dE
¢, (xX,¥,25¢) =

> (30)
r 0 \/(x - E)z +r
with
€ . '
fll (xe) = 2_A11X (Xie) = O(€”). (30")
Thus
p, (x,y,2zi€) = O®). (31)

The most important result to come out of the matchmg process is the
condition that ®; — 0 as R —w. This is the missing boundary condition
on the inner solution term, and we can now formulate the problem for @1
completely, viz., (Il satisfies (22'), (24'), (26), (27), and

(2/€) F.. (X;€) sin 8
P, (X, Y, Ze) = 1 - < [1 +0@/R)] (32)

as R —o0, where

Py Gae) =, () de. (33)

From Bernoulli's equation (properly stretched), we obtain for the pressure
on the body:

1
ey = - 2 w2 2
Po?(: Y,HX,Y)€) = - p {6 GH + U ©1X + o7 [@1Y + @12]} (34)

(This is really the first term in an inner asymptotic expansion for p(x, y, z),
as indicated by the subscript on Pj.)

There has been nothing in the formulation of this problem which implies
‘that the body is symmetrical in y. Therefore, the fact that ¢, is sym-
metrical in Y for large R simply implies that the unsymmetrical part dies
out more rapidly than l/R as R-—soe, It might be assumed that it does
not appear here because it is higher order in €, but this is not the case,
In fact, the unsymmetrical part of @;, if it exists at all, is O(e?). Ne-
vertheless, it must be matched to ¢,, which is O(e*), which indicates
that it is indeed higher order in the fav fzeld than the first approximation.

It is of some interest to consider the nature of the far-field solution,
;. With the definition (33), we can perform some simple mampulatlons
on (30) to show that
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3 z Fpy (E;€) dx
j (35)

¢, (X, y,2;€) = \ ,
1 2 [(X _ 5)2 + y2 n Z2:]3/2
which is the potential of a line of vertical dipoles along the x-axis, of
density Fy; (x;e). This can also be interpreted as a system of 'vortex-
pairs', which is equivalent to a system of horseshoe vortices compressed
down to zero span. If F,, (x;¢) does not vanish aft of the body, there

exists a vortex wake. i
Finally, we note form (17) and (35) that we can write down explicitly
the expression for the far-field free-surface disturbance:

T 7 , X - E
¢, yi€) = —% j dE Fy; (55¢€) (36)

o 0 | 1+ [(X T8+ y2]1/2

3. The variety of possible problems

In the Introduction, it was stated that there are four - and only four -
free-surface, slender-body problems of physical interest (for steady mo-
tion). These were arranged according to the order of magnitude of gravity
or, what is equivalent, according to the order of magnitude of Froude
number, Physically, the four problems were distinguished according to the
occurrence or nonoccurrence of gravity waves in the first approximations
for near-field and far-field solutions.

Setting out now to demonstrate these assertions, we find it convenient
to dispose of another question at the same time, namely, the possibility
of generating other problems of physical interest by a different selection
of the stretching parameter. Whenever the method of matched asymptotic
expansions is used, this question should be considered, for there is no
absolutely dependable general procedure for deciding how to distort the
coordinates in the inner problem., We shall show that no new physical
consequences can be found from other stretching arrangements, at least
within a large class of such distortions. To be specific, we shall limit
our consideration to distortions in which the longitudinal scale is not al-
tered and in which the two transverse scales are stretched by like amouuts,
in proportion to a power of €. It should be emphasized that the statements
and conclusions which follow apply only to the lowest-order nontrivial terms
in the asymptotic expansions, :

To express the full generality allowed above, we define a new gravity
constant,

where v is arbitrary, and we stretch the coordinates as follows:

X =x; Y=yebP; z = ze5,
B being greater than zero but otherwise arbitrary. Now we see what this
generality does to the formulations of the outer and inner problems.

The outer-region behavior does not depend directly on the stretching
(although absolute orders of magnitude do), Therefore we need only con-
sider the effect of varying v. It is easily seen that the outer solution sa-
tisfies the 3D Laplace equation and furthermore that it is necessarily li-
near, sSo that we have the two free-surface condition:

A. 0=67G§0+Uﬁ01x;
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B. 0= Ufox 2

both are applied on z = 0. The {,-terms cannot be higher order than the
p,-terms in both equations, since that implies that ¢; = ¢;, = 0 on
z = 0, i.e., Py = 0 everywhere. Furthermore, the Eo-term cannot be
lower order in either equation, since that implies that ¢, = 0. Now we

have three all-inclusive conditions, which we present in tabular form:

OUTER REGION

v <O vy =0 vy>0
1, = 0 on z = 0. gravity waves o, = 0 on z = 0.
(rigid-wall condition) (pressure-relief condition)

In the inner region, we distort the space variables as described, ob-
taining the 2D Laplace equation, the two free-surface conditions:

2
A )
X Y Z
B. 0=cUz +e®® 2z -€¢P0
0% ly “% 1z

and the body boundary condition:
20, p
C. — =¢€% UHX/’\/l + Hy,
aN
where H(X, Y) = e'ﬁh(x,y). Condition C implies that ¢; = O(eZB ). We now

find that there are again three possible conditions:

INNER REGION

v <B y=B y >B
¢, =0 on Z = 0, ravity waves of pressure-relief condition
Z g . . . s
(rigid-wall condition) finite amplitude (finite-amplitude distur-
bance)

We see that the nature of the outer (or inner) solution depends only on
whether v is less than, equal to, or greater than 0 (or 8). The actual
value of 8 is of no consequence, except that it must be (strictly) greater
than zero., Therefore we may as well take it to be unity. Then there are
in all five cases to be considered for v:

a. b. c. d. e.
Yy<0 v =20 0 <y <1 vy =1 ¥y >1

Cases a, b, .d, and e cerrespond, respectively, to the cases (1) - (4) in
the Introduction.

We discard c. as offering nothing new physically. It is really a strange
hybrid case: the solution satisfies the rigid-wall condition in the near field
and the simple pressure-relief condition (without gravity) in the far-field,
In other words, the near-field solution corresponds to the limit of low
Froude number, the far-field solution to the limit of high Froude number.
The interesting effects of gravity are submerged somewhere between the
two regions. In the language of the Appendix, we could assume that there
would be an 'intermediate problem'', in which gravity would appear ex-
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plicitly. In fact, it is clear that there must be more to the problem of
case c. than simply finding inner and outer expansions, for the following
reason., The inner solution satisfies (Dl =0onZ = 0, and so it must have
a large-R representation of the form

Ap (X;€)
F cosmb|——— + B_(X¢) R"| + A (X;e) + C(X;¢) log R.
m=l R
The outer solution satisfies o, = 0 onz =0, and so it has a small-r re-
presentation of the form
oo am (x;€)
T sin m0 ————
m=1 r

Obviously, these cannot be matched.

The methods of the Appendix can be applied to provide a solution. It
can be shown that in addition to the inner and outer expansions there is
a third expansion to be found, which is valid between the other two. That
is, it is an inner expansion with respect to the original outer expansion
and an outer expansion with respect to the original inner expansion. It
must be obtained in detail through two matching procedures. It satisfies
the 2D Laplace equation and linear free-surface conditions. (However, it
is not a conventional 2D gravity wave problem.) Physically, it cannot pro-
vide any information not already implied in cases b and d.

With respect to our basic set of four problems, arranged according to
the order of magnitude of g, it was indicated in the Introduction that gra-
vity generally has a greater effect in the inner region than in the outer,
This point deserves some emphasis and elaboration. In Tuck's (1965)1
analysis (g = O(1)), gravity seems to disappear altogether in the near
field, for there he obtains a gravity-free boundary-value problem. Howe-
ver, what actually happens is that gravity dominates the near-field flow
to such an extent that the first approximation ig a perturbation about an
infinite-g process. If we assume that g = Of(e - ), this behavior extends
into the outer field as well.

If now we assume that gravity is weak, viz.,, g = O(¢), the already-
small effect of gravity in Tuck's far-field problem disappears altogether.
That is, the free surface becomes a simple pressure-relief surface. In
the near field, the dominance of gravity is weakened to the point where
gravity waves occur. With the severe constraint of gravity reduced, the
disturbance to the free surface is much increased, and we have the finite-
amplitude problem described in detail in the previous section., I we de-
grade gravity one degree further, sav let g = O(e2 ), the outer problem is
unchanged, since gravity already has no effect there. In addition, the
effect of gravity drops out of the inner region.

4. Application of the theory for g = OE)

Planing Suvfaces. The equation describing the body surface was orig-
inally chosen in the form (1) specifically for the application to problems
of planing surfaces. There seems to be little question that the theory as
developed here ought to apply to such problems, provided the configura-
tions studied do not violate the assumptions of slender-body theory. These
assumptions are most likely to be of concern as they relate to the geo-
metry of the bow and stern.

If the leading edge of the planing surface is perpendicular to the di-
rection of travel, a violation of the assumptions does occur there. How-
ever, if the planing surface has just a small amount of deadrise, the lea-
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ding edge of the wetted area will be appreciably swept-back in shape,
and the geometry at the bow does not prevent application of slender-body
theory. Fortunately, most planing boats do have some deadrise, for other
reasons. :

The stern causes more of a problem, at least in principle., A planing
boat usually has a sharp trailing edge which produces an effect like that
of an airfoil trailing edge, namely, it constrains the fluid to pass off the
planing surface smoothly at a given angle. In linearized analyses of pla-
ning surfaces, one usually treatsthis sutuation by postulating a Kutta con-
dition -- which is just as valid as in the airfoil problem.

In the numerical solution of our nonlinear inner problem, it is simple
to guarantee the same result, i.e., that the fluid leaves the stern smoothly,
provided the lifting surface ends abruptly. (Obviously, an ideal-fluid theory
cannot predict a separation from a smoothly curving surface.) A proposed
method for obtaining the numerical solution is described in the next sec-
tion, Anticipating that discussion somewhat, we would use Equation (27)
to obtain the free surface shape at x = x; + &x from the shape at x = xj
(through a finite-difference approximation). Now, if x = x, denotes the
trailing edge (assumed perpendicular to the x-axis), we still could use (27)
to step the solution to the next section, x = x,; + Ax, using the values of
all quantities as calculated at x = x;, The free surface will then auto-
matically extend smoothly off the trailing edge. There is no problem in
principle about this procedure even if the trailing edge is not perpendicular
to the x-axis. Thus the kinematic free-surface condition provides the means
for including in the theory a sharp free-surface breakway from a typical
planing-boat stern.

On the other hand, the dynamic free-surface condition leads to funda-
mental difficulties. The pressure on the body is given by Equation (34).
If there is not to be a discontinuity in pressure at the stern (x = x;), then
the pressure must approach zero as x —x, on the hull. But there is no
reason in general to predict that Equation (34) will act in such a convenient
manner. It is characteristic of the first approximation in this theory (as
in all slender-body theories) that a disturbance at a particular section can
never have an effect upstream of that section, and so there is no mechanism
by which the flow (as described by the theory) can adjust upstream to pro-
duce the smooth behavior expected at the trailing edge. Thus the theory
will generally predict an abrupt change in pressure and in the other va-
riables, notably @,,, at the stern of a planing surface. This is clearly
not consistent with éle slender-body assumptions.

It would be easy to say simply that we should not attempt to apply slen-
der-body theory to such problems, but experience in aerodynamics suggests
that we may be more optimistic than that, The same failing occurs in many
aerodynamic applications of slender-body theory; nevertheless, it is well-
known that the resulting predictions are far from useless. The effects of
the trailing edge are indeed manifested at upstream sections, and the pres-
sure does adjust itself so that the boundary conditions are satisfied smoothly.
Such effects, however, are significant over only a small percentage of the
chord-length. The total force on the body is still predicted fairly accura-
tely, the moment somewhat less accurately.

The application of slender-body theory to thin wings may be used to
suggest further reasons for optimism in this matter., For a thin wing with
no lateral curvature, sufficient conditions for satisfaction of the trailing-
edge condition are that at the trailing edge (a) the wing have no longitu-
dinal curvature and (b) the rate of change of span vanish. Under these
conditions, the predicted pressure discontinuity (between upper and lower
surfaces) automatically approaches zero at the trailing edge. Conventional
planing hulls often satisfy such geometrical restrictions, and so one may
expect similar propitious consequences. Unfortunately there does not seem
to be any way of proving this.
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Displacement Hulls. Much of the preceding discussion for planing sur-
faces can be carried over to displacement hulls, and so only the differences
will be noted here.

Firstly, a conventional ship is likely not to have a sharply cut-off stern;
so there is no problem in such cases with pressure discontinuity. On the
other hand, a smoothly rounded stern may be surrounded by a separated
flow, and this phenomenon cannot be predicted by the present method (or
any other method in existence)., The error in predictions may be of greater
consequence than the error due to trailing-edge discontinuities.

Secondly, it appears that the speeds of displacement ships are far too
low for the present theory to be applicable. Certainly, the usual values of
Froude number for displacement ships lie below 0.4, contradicting the
assumption herein that F = O(e?), Nevertheless, an a p7iovi judgment
about reasonable values of a small parameter in an asymptotic solution is
a chimera., This point has been argued at length in the Introduction, All
that remains now is to try the method to see how well it works out.

Even if the present method does not provide a realistic description of
the flow around a conventional ship, there is a distinct aspect of the same
problem in which it should still be useful. Slender-body analysis is cha-
racterized by the fact that the flow at any cross-section is assumed to be
unaffected by phenomena at after sections. This suggests that the flow
around the bow is largely independent of total ship length, and so it should
be possible to predict the bow flow independently of the flow around the
rest of the ship.

Since Froude number is generally based on overall ship length, we might
suppose that an unconventional Froude number which relates to local con-
ditions would be more appropriate for the analysis of the local flow around
the bow. Formally, we can define a "running Froude number", similar to
the Reynolds number often used in studying boundary layers, say,

F, = U/Vex. (37)
The next logical step would be to apply the high-Froude-number analysis
to that part of the ship in which F, is greater than some fixed number.
This part of the ship must still be geometrically consistent with the slen-
derness assumptions, of course,

Calculating the flow around the bow of a conventional ship at conven-
tional ship speed is an old problem on which practically no progress has
ever been made. It is basically a nonlinear problem, and the usual linear
ship theories can af best include some account of the important nonlinear-
ities only in the form of singularities, Since the small-g slender-body the-
ory presented herein actually involves a nonlinear near-field description,
there is a reasonable chance that it can provide a more detailed descrip-
tion of the bow flow than has been possible heretofore.

It may also be noted that the present theory includes all cases for which
g = o(e). The effect of gravity enters into the boundary value problem
only through Equation (26), the near-field dynamic free-surface condition.
If Froude number is exceedingly large, the first term in (26) simply be-
comes very small, until it vanishes, and then we have the appropriate

equation for the case g = o(e). Thus, the use of the "running-Froude-
number' argument does not invalidate the theory as developed for g = O(€)
even at the bow where, by (37), F, ==,

The fact that slender- body theory treats the cross-sections in succession
is also a limitation. In particular, it prevents one from obtaining a des-
cription of the accelerated flow just ahead of the bow. Of course, if the
bow is blunt, the whole slender-body treatment fails. Tuck (1964)(7) has
provided an analysis technique for treating the end singularity in an infi-
nite fluid, but his technique has not been found applicable to the case of
the surface ship. It seems quite possible that with the assumptions pre-



Nonlinear High-Froude-Number Free-Surface Problems 229

sented herein (concerning gravity) the Tuck procedure could in fact be
applied to the ship bow problem.

5. Fovwmulation of the numevical prvoblem

The solution of the near-field problem has been reduced in the first
approximation to finding a function, @;, which satisfies the 2D Laplace
equation, (24'), subject to the body boundary condition, (22'), the two free
surface conditions, (26) and (27), and a condition at infinity, (32). The
pressure on the body is then given by Equation (34). There seems to be
no alternative to attempting a numerical solution of this problem.

Through the use of integral equations, each of the two-dimensional pro-
blems can be reduced to a one-dimensional problem. Fortunately, the
computational procedure can be set down fairly easily. We start with
Green's theorem in two dimensions for the potential at any point in the
fluid:

1 d .
0, (X,Y,2) = — [@1 log R; - @, — (log Rl)} dsr, (38)
2m N oN

where R> = (Y - v)? + (z - z1)"

The integration must extend over the body, the free surface, and a closing
surface at infinity, but Equation (32) shows that the last of these can be
ignored. On the body, we know the normal derivative, from (24'), but not
the value of the potential. If we know the value of the potential at any
section, we can use Equation (26) in a finite difference calculation to find
its value on the free surface at the section located a short distance aft,
However, we do not have a direct way of finding the normal derivative on
the free surface. The procedure then is to let the point (X,Y, Z) in Equation
(38) approach the fluid boundary and solve the resulting integral equation
for (a) @; on the body and (b) 8®; /8N on the free surface. The position
of the free surface at the section is known from the solution at the pre-
vious section, through use of Equation (27). Equation (34) then gives the
pressure on the body.

APPENDIX -- THE INTERMEDIATE PROBLEM

Previously we set up inner- and outer-region problems in which the
transverse coordinates were, respectively, stretched by a factor 1l/e and
ungtretched. Now we set up a new problem in which the amount of stretching
is not completely specified. (Actually, we set up an infinite number of
problems.) We define new coordinates as follows:

X = x; Y = ye % Z = ze-a; 0 < o<1, (39)

The stretching parameter o is not to be confused with the B used pre-
viously, Here we take o = f§ = 1 always to correspond to the inner coor-
dinates and ¢ = 0 to correspond to the outer coordinates; other values of
o remain simultaneously under consideration, as they lead to other problems
which are related to the outer and inner problems. For 0 < o < 1, we
can apply neither the body boundary condition nor the radiation condition;
the intermediate solution must allow arbitrary behavior at R = 0 and
R =9, s0 that it can be matched to both inner and outer solutions. How-
ever, as we see presgently, the intermediate problem is simpler than the
problems for ¢ = 0 or @ = 1,
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As before, we assume the existence of an asymptotic expansion for
¢p(x,¥,2), but there are now an infinity of expansions, depending on the
value of @, and so we write ¢ as an extra parameter in the terms of the
expansion: :

N
ox,y,2) ~ L @, (X,Y,Z;€;0),
n=0

Oner = o(@y) for fixed VY + z° = O(l), fixed o, as € —0. Similarly

there is an expansion for ¢:

N
gxy)~ L €*Z, (X,Y;5;0),
=0

Zpga = o(Zy) for fixed Y = O(1), fixed o, as € —0, It must be under-
stood that for each o the small-€ expansion is to be found and then re-
ordered appropriately in terms of €; this is what is meant by the expres-
sion "fixed a".

The formulation of the problem proceeds in a manner quite analogous to
that of the inner problem previously, and so it will only be outlined here.
First, it is rather obvious that

O, (X, Y,Z;6,0 = UX

for any . Then we find that @, satisfies the 2D Laplace equation and the
linear free-surface conditions:

0=®1 on Z

i

0;

0=¢*yU Zo, - @, on Z =0, (40)

Thus (Dl satisfies the simpler aspects of each of the two limit solutions,

that is, the simpler differential equation of the inner problem and the
linear boundary conditions of the outer problem. The general solution is:

aim (X;EJQ)

®,(%. Y, Zjese) = L sinm® {————— + b (Gea) RT L,  (41)
m=1 R
where Y = R cos 8, Z = R sin 9. Of course, nothing can be said about

the coefficients a;; and by, until the matching process is considered.
There must be an overlap between the domain of validity of this solution
(for some range of @) and that of the general cuter solution, Equation (19).
This means that in the small-r approximation to the latter we change va-
riables according to (39); the result should be asymptotically the same as
the intermediate solution, for « fixed, as € — 0. In this way we obtain:

X
a, (Kee) = 2™ ™ [ X -8t (.9 dE (42)
0

1m 1m

b1m (X;esa) = 05
and thus we have matched the outer and intermediate solutions. The above
formula can be compared with Equation (29).

In order to distinguish between independent variables of the inner and
intermediate problems, let us temporarily denote them by subscripts 1
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and o, respectively, i.e., R, = re = and R, = re % etc, The intermediate

problem as formulated above is approprlate for o arbitrarily close to
unity, and S0 we can match the series (41) to the 1nner  solution, o, (X
Y,Ze;1) = Q) (X,, Y, Z;;€61), Inthe latter we let (Y? +Z%)E =R, =R e-1+a
the matchmg pr1n01p e requlres that, to leading order

a (X;e;a@) sin mo

~ 14 1m

m

,Z e M1y = &
o

m=1 R o

®1 (Xo[' Yoc€

This is equivalent to specifying the behavior of ®;(X;, Yy, Z;€1) for large
R,. that is, if we now resubstitute R; = Ra€'1+a, we have, for large Ry,
a (X;€;a) sin m6

1 Rm € m(1-a)

@1(X1' Y, Zyi€il) = mZI-

2+m-m o

This is O(e ), and so a;, (X;€;a) = O(€ ). From (42), we see that
fi, (Xie) = O(e*™ ), which was stated but not quite proved earlier. This
implies then that the only term which should appear in the outer solution
is that for which m = 1.

In the intermediate problem, we now see that the leading term (and
thus the only term) is

ay, (X;€;0) sin 0

0 (X,Y,Z;€50)
1 R

2¢ =%

F; (X;€) sin 8. (43)

(See (33) and (42).) We can also obtain very simply from Equation (40)
that '

-3a
2¢€ X
Z.(X,Y:e;a) = d& F.. (£;€).
0 U Yz j; 11

We have not really obtained any new results here, except to prove
the validity of (43), which implies that

2 Fiy (X;€) sin B

0, (X, Y, Z;e1)
eR

for large R, rurther contributions to @l at large R wiil be small in com-
parison either because of the R-dependence or because of the €-dependence,
In particular, we note that any antisymmetric part of (D must be o(1/R)
as R—o0 and/or o(€?) as € — 0,

This completes the analysis of the lowest order nontrivial terms in the
asymptotic expansions for p(x,y,z). The exteansion to higher-order terms
is not likely to yield useful results, but we shall take a brief look at the
next stages, for it throws some light on the structure of the solutions in
the different regions,

We have found that ¢, = O(e¥®) and Z, = O(e¢33* ), If we use these
facts and reconstruct the differential equatlon and boundary conditions to
a higher order than previously, we obtain conditions on (DZ and Z;, for
0 <a<i,
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First is the differential equation for Q,:

0] + 0 = - 9, .
vy 222 Txx
The right hand side is O(€3+°‘), and so @2 is no higher in order than this.

However it could be of lower order, in which case the right hand side
vanished. We can represent this situation to advantage by a simple figure

IogEO(f(e,a))

. i
820,@1 /
3k
\\ e

Q] 4
2

3
1
0 P

0 3 3 1 a

in which the abscissa is @ and the ordinate is the exponent of € in the
order-of-magnitude statement., Thus, ®; = O(e®**) is represented by the
straight line, ordinate = 3 - a. We could call the ordinate logeO(Q)l ), in
a symbolic sense. The representation for @, in this figure cannot lie above
that for €2eQ,.

Second is the dynamic free-surface condition, which is:

O:€1+°‘GZ0+U(D2X on Z =0,
The first term is 0(64-201 ), which is also indicated in the figure. Since
this term is completely known by the time we undertake the Q,-problem,
it cannot be zero, and so it cannot be lower order than the second term.
In other words, {, cannot be higher order than e4-2a,
From the figure, we see now that the intermediate problem for @2 must
be broken into two parts:



Nonlinear High-Froude-Number Free-Surface Problems 233

0 <a<1/3 1/3 <o <1
Py = O(e™) By = O(et2x )
20
+ = - + = 0
®2YY @zzz N (Dlxx @zYY szz
Q=0 on Z=0 ™ G zZy+UDy =0 on Z =0,
In both cases we obtain the kinematic condition:
O=€2°‘UZ1 -@2 on Z =0,
X z

This division is reasonable enough. The previous outer problem differs
from the corresponding intermediate problem in that its solution satisfies
the 3D Laplace equation, and this difference is having its effect in the
present problem for ¢ > 0. On the other hand, the previous inner problem
involved finite free-surface displacements, and these are now affecting
the intermediate problem.

It is also obvious that the problems for o = 0 and « = 1 must be treated
separately, for, by definition, (Dz = 0@1 in either case. Yet the inter-
mediate problems formulated above show that @, approaches 0(DQ,)

@ —-0 or 1. The outer problem can in fact be solved explicitly (if not
uniquely); its solution is:

0, y,2:€) = Q (X, Y, Z;€0) (44)
€G cos 28 j~° [’\/(X-E)z +R? + (X- g)] 2

_— dg ., (2;€)
20 | R* 0 n e VX-§)? + R®

0l
\

j? F, (55¢) dg
' o V{X- E,) +R® }

» Sinmo [V(X—E)2+ R+ (X-’C'.)]m
o jdz e T e - v

The first two terms are presumably known; they are both Of 4). The sum
involves another set of unknown functions, fg, (X;e€), to be found through
an appropriate matchmg process. One might expect Q,, for o = 0, 10 be
O(e?*), and this is indeed the case; certainly it cannot be o(e?).

To effect the matching properly, one does not attempt to match just 0
in the different o-domains, of course, but rather the whole asymptotic
solution as far as it is known. That is, we must write down Q, + @, + Q,
in each domain, reorder the terms with respect to €, and match the re-
sulting expressionsinthe overlapregions. The general three-term solutions
in 0 <@ <1/3 and 1/3 <a <1 are readily found, respectively:

0<a<1/3

2¢ 7@

¢, +0, +0, = UX +

- F, X;€) sin 8 (45)

- e Fllxx (X;¢) R log R sin @

_— a9y (X560 n
+ I sinmb@ ————— + Dby (Xi€;) R .

m=1 R
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1/3 <a <1
2€ )
@0 + @1 + @2 =UX + —;Fll(X5€) sin 8 (46)

2¢1% G cos 20
- [e-or, @ow

U? R?
0
o a, (Xie;a)
+ L sinm® oy by, (X;€;a) R™,
m=1 : R m

The three-term solution for the outer region will not be rewritten; it
consists of the terms already given in (16), (30), and (44). The inner so-
lution is not known explicitly, We might include here also the case that
@ = 1/3, but this would add nothing to the results,

For a near to zero, we find that @y has a term proportional to R log
R, and this term is 0(63““ ). Since this term arose in the solution of the
Poisson equation which must be satisfied in this domain, one may expect
that it is related to the three-dimensional nature of the first outer so-
lution., In fact, this is the case, for if one carries the small-r approx-
imation given in Equation (20) further than just the one term, one finds
that the next term exactly matches the term in question in Equation (45)
above. In the usual way with these expansions, we can speak loosely of a
logarithm as being O(1), and then we can go one step further in this same
matching process, finding a further term in the outer solution for @, which
matches the term containing by, in (45), thus determining this coefficient.

If we consider the term ‘®3 for a moment, we find that it satisfies a
Poisson equation too for small @:

O3, + Pa,, = - € Dy, = O(e™*), 0 <a <1/s.

The order-of-magnitude statement alone indicates that at least the first
term of O, will be controlled by @, in the outer region. However, the
domain of ¢ in which this occurs has been reduced; we must have o < 1/5.
We can expect QO to be controiled by @; (X, Y, Z;€;0) in a small range of
a near a = 0 for evevy n.

We can avoid all of this difficulty, as follows. The term @1 in the in-
termediate solution is identical to the leading term of @1 X,Y, Z;€;0) eva-
luated for r = R €% as € —0, So we could use Q;(X,Y, Z;€;0) directly
to generate the first term of the intermediate solution - to as close to
a =1 as we like. In other words, the intermediate solution is simply the
intermediate-range limit of the outer solution. (This is not true in many
problems.) We have shown directly that this was true for Q;, and it can
be seen that it is true for @, as well, for the established part of @, (X,
Y, Z;€;0) given above in Equation (46) exactly.matches the intermediate
expansion of (I)z(X, Y, Z;€;0) in the range 1/3 < a <1 (the term containing
cos 20). We note that the term containing R log R is dropped because in
this range it is higher order in €.

With respect to matching intermediate and inner solutions, not much
can be said, The unknown functions, fo (X;€), will be determined in this
process, and they will almost all vanish, for they will be found to be
higher order in €, Clearly, the term containing fo; must match Q5 of the
inner solution, since the sin 8/R -behavior of Q; is already accounted for
in the first-oraer intermediate and outer solutions. On the other hand, the
term containing f g, will match the antisymmetric behavior (if any) of the
first inner solution. If the body is not symmetric in y, fgo will be O(e?),
and this term must appear in the intermediate and outer solutions, Q.
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Thus, asymmetries arise in the far field first in the (Dz ~-term and are
of order €%,
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